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Topological aspects of the non-adiabatic Berry phase 

Ali Mostafazadeht and Amo Bohmf 
Department of Physics. The University of Texas at Austin, Austin, TX 78712 USA 

Received I 1  January 1993, in final form 1 I May I993 

Abstract. The topology of Ihe non-adiabatic parameter space bundle is discussed for evolution 
of exact cyclic state vectors in Beny's original example of split angular momentum eigensw. 
It tums out that the change in topology occurs at a critical frequency. The first Chem number 
that classifies these bundles is proportional to angular momentum. The non-adiabatic principal 
bundle over Ihe parameer space is not well defined at Ihe critical Irequency. 

1. Introduction 

In a previous paper [ I ]  the relation between the parameter space and the projective space 
approach to the problem of geometric (Berry) phase is discussed. The key idea is to use 
the classification theorem for principal bundles or alternatively for vector bundles. This 
method suggests a way of constructing fibre bundles over parameter space, even for the 
non-adiabatic evolution of state vectors (at least for a particular class of quantum systems). 

Let M denote the smooth, compacts manifold of parameters x ,  and H = H ( x )  be a 
Hamiltonian which depends smoothly on x E M. As described in [ 11, the cyclic state vectors 
are not energy eigenvectors. The adiabaticity assumption, therefore, does not describe the 
actual situation, rather it provides just an approximation. One has to distinguish two regions: 
the adiabatically related region for which the adiabatcity assumption yields a limiting case, 
and the non-adiabatic region. In the non-adiabatic region, one cannot use the adiabatic 
theorem and the cyclic state vectors cannot be approximated by the eigenvectors of the 
Hamiltonian. 

The relation between Berry-Simon (Bs) 121 parameter space bundle interpretation of 
the geometric phase, and the Aharonov-Anandan (AA) [3] approach of using the projective 
space bundle, is the following: the former principal bundle 

AN : G ---t ,.. -+ M (1) 

is obtained as a pullback bundle from the latter 

qN : G + VN + GrN. (2) 
In ( I )  and (2), G = U(N) or O(N) depending on whether the Hilbert space is real or 
complex. N .c 03 is the dimension of the degeneracy subspace where the cyclic state vector 
belongs, VN, and Gr,v are infinitedimensional (real or complex) Stiefel and Grassmann 

t Center for Relativity. 
t Center for Particle Theory. 
$ In most physical examples M is compact However. compaclness is not a necessary condition in a large pad of 
our analysis. As far as the mathematical results are concerned, M must at least be para-compact 
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manifolds, respectively [ I ] .  In other words, there is a continuous map f : M + GrN such 
that the following diagram commutes 

A Mostafazdeh and A Bohm 

and f' is a bundle isomorphism, i.e. AN Z f ' ( 7 ~ ~ ) .  
For the adiabatic case f is given by the Hamiltonian, namely 

Vx E M f ( x )  E I@x)(@xI (4) 

where (@s I is the eigenstate of H ( x )  which evolves in time as x traverse$ a closed loop 

C : [O. TI 3 f -+ x ( t )  E M x(0) = x ( T )  . ( 5 )  

To repeat the same construction for the non-adiabatic case, one needs to consider a class 

(i) The cyclic state vecton exist and are eigenvectors of an operator 
(ii) f i ( x )  = H ( F ( x ) ) ,  for some continuous (smooth) function F : M + M .  
For this class of quantum systems, one can still use the classification theorem. This is 

of quantum systems, for which 
= f i ( x ) .  

realized by replacing f by a map f defined by 

f = f o F : M + G r N .  

Then the exact (non-adiabatic) bundle LN over the parameter space is obtained as the 
pullback bundle ,&J = f ' ( 7 ~ ~ ) .  

f and f pullback the canonical connection of the universal bundles VN onto AN and L N ,  
and yield the adiabatic and non-adiabatic Berry connections, respectively. The geometric 
(Berry) phase is identified with the holonomy of these connections, in each case. 

The topologies of AN and ,i~ depend only on the homotopy classes of [ f ] and [f] in 
[M, Gf"]. Hence, if F is a diffeomorphismt (homotopic to identity will suffice) [f] = [f], 
and AN 2 ?.N. 

For the non-degenerate (Abelian) case, N = 1 (G = U(1)) and 

Gq = @P (CO) = K ( 2 ,  Z) 

is an Eilenberg-Mche space. 
correspondence: 

This allows one to have the following one-to-one 

[ M ,  C P ( 0 a ) l ~  H Z ( M ,  Z) . 
Hence, it is the first Chem class c,  E HZ(M.  Z) that determines the topology of U ( I )  
bundles,A=Al andh=X,.  

In this paper, we study a particular example for which the assumptions (i) and (ii) 
are valid$. Thus, we explore the topology of the bundles h and X, and discuss the rather 
interesting implications of the topological information. 

t Note hat in the adiabatic limit f approaches f ,  hence. if F is a diffeomorphism it will be necessarily hmotopic 
to idcntily. In other words, F as an element of Diff(M) belongs to the connected compnent to the identity. 
t Except for one instana. 

- -  
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2. Non-adiabatic evolution in Berry's example 

We consider a magnetic dipole p in a magnetic field B(x( t ) ) .  The Hamiltonian of this 
system is given by 141 

H ( x )  = - p .  Bfx) = bx . J 

c : [o, TI 3 I -+ x(t) = (e = constant, (p = or) E sZ 

b = Bge/2mc. (6)  
The parameter space is S2 and the closed loops considered are the following circular loops: 

(7) 
where x E Sz c R3 and (e, p) are spherical coordinates with respect to a standard Cartesian 
coordinate basis ([I. [z, 3 or (i, j ,  k) of R3. 

The SchrZidinger equation is exactly solvable in this case [5, 61. The Hamiltonian H 
can be written in the following form: 

* - -  

H = UtHoU (8 )  

where 

U exp((ito/h) 53) 

Ha E bza * J = b(cosOJ3 + sin6'1,) 

xo (e. (o = 0) 

and J is the angular momentum operator. Note that due to (7), Ho is time independent. 
Now, let I*') = U[@) and substitute I*) = U t t v )  in the Schrodinger equation 

ifia,i*) = HI$) 

where HL is defined by 

U; U H U ~  - i i iualut  

=H0-013 

= b[(cosB - o/b)J, + sineJ11. 

Again, because of (7). HA is time independent and hence (9) can be immediately integrated 
to give 

I$'(t)) = e-'""'Al*'(o)). (10) 

I*(~)) = utl* '( t)) = e-"fO/n)'he-li'/hJH' W O ) )  

Using the definition of I$') one has 

(11) 

Next, we show that the cyclic state vectors are eigenvectors of HA. Let Iq(0)) be an 
exact cyclic state vector, i.e. 

I$(T)) = ei'l$(0)) 
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where T = 2 x / w  is the period of a cycle and U E W. Using ( I  I )  one then has 

A Mostafazdeh and A Bohm 

(12) 

The last equation (12) says that I$(o)) is an eigenvector of the operator 
exp(-(ki/fi)J3) exp(-(iT/h)HA). However, the two operators exp(-(%i/h)J3) and 
exp(-(iT/h)HA) commute, hence I$(O)) must be a simultaneous eigenvector of these oper- 
ators and so of HA. Furthermore, since HO and HA do not commute, I$(O)) is not an energy 
eigenvector. This justifies our first assumption, (i), namely that the cyclic state vectors are 
eigenvectors of an operator Hi. 

e-(lxilhUle-OTfi)H' - Ol!b(O)) = e"l4(0)). 

The second requirement, (ii), is also fulfilled. Let us define the map 

F :  M = s2 + sZ = M 

bYt 

Vx = (0, q) E S2 F(x)  = .i = (g, (3) 

Then, it is easy to see that F is a smooth function of x E S2t, and 

Let us now define the following Hermitian operator: 

&(xo) (Ha 0 F)(xo). 

Since fio is a scalar multiple of HA, the cyclic state vectors are also eigenvectors of &.Thus 
condition (i) is satisfied for fi0 too. Next we realize that we have chosen a fixed coordinate 
frame in which the system is at (0 = 0 at initial time: f = 0. Allowing for an arbitrary 
choice of coordinates we define 

(14) 

The cyclic state vectors I$(x)) are then eigenvectors of l? (x ) .  Vx E M = S2§. Hence, fi 
satisfies both (i) and (ii). 

The adiabatic limit is w << h, in which F approaches to the identity map. The (adiabatic) 
Berry connection is given by [4,6] 

f i ( x )  = H ( 2 )  = H ( F ( x ) )  = (H  0 F ) ( x )  

A =i(n,xld\n,x) 

where In, x )  is a single-valued basis eigenvector of H ( x ) ,  and 

1% .w = 0)) = IW)) N- I$CW 
t These formulae are local expressions. valid only in Lhe upper patch of S' (excluding the south pole), H # R. 
To get the expressions for the lower patch, one can simply Lake t) lo H - n. in th is case H # 0. 
% Exccpt for (U = h in which case F fails U) be well defined at the north p i e .  We discuss this case in section 3. 
8 Nob ha( here the pint x = (8 .  a) is the swing point (f = 0). hence A ( x )  is still lime independent and has 
all the properties of Ho. 
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Choosing In, x) = 1k.x). k being an eigenvalue of z(t) J ,  one obtains [6] 

A = -k(l -cos@)dyl. (15) 

The corresponding Berry’s curvature two-form is then given by 

S2 =dA = -ksin@dB Adp.  (16) 

The non-adiabatic BS bundle x is the pullback of the AA bundle q(= q ~ = l )  induced by 

f = f o F .  (17) 

Thus 

x = f ( q )  = (f o F)’(q) = F’(f’(q)) = F ( A ) .  

A = f(d) = F*( f *(A)) = F*(A)  . 

(18) 

Similarly, since f and f pullback the connections, one has 

(19) 

In (19) A and A stand for the canonical (Stiefel) connection (on q) ,  and the non-adiabatic 
(Berry) connection (on i), respectively. To find the (local) expression for A, one can d i d y  
use. (19). The result is 

(20) 

An altemative method to calculate A is to define the geometric phase to be the difference 
between the total phase and the dynamical phase. This is &ne in [6] .  The result is identical 
with (20) but the derivation is much longer. The corresponding curvature two-form (to A) 
is given by 

A = -k( I - COS 6)dp. 

d = dA = -ksin6d6 A dp 

= -k(;)l( i - sinedB Adp.  

The non-adiabatic Berry (geometric) phase angle is obtained as the holonomy element 

where C = as is defined in (7). 
At this point we would like to emphasize that although conditions (i) and (ii) of section 1 

Seem to be quite restrictive, the system of (6) is certainly not the only case where they 
are satisfied. Indeed, equation (6) is a member of a class of quantum systems whose 
Hamiltonians belong to a semi-simple Lie algebra [9, 101. The method presented in this 
paper applies to these systems. This is quite transparent in the analysis of [IO]. 

3. Topology of X and % 

First we introduce some notation. Let U z o/b, z = cos@, i cos& we also define 
2 - U  - F&. U) = =z. 

Ju* - 2zu + 1 
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Note that the only difference between (13) and (23) is that in (23) we chose a different set 
of coordinates, namely (z, (p) and (2. (p) instead of (0, (p) and (6, (p), respectively. In this 
notation equations (20) and (21) become 

A Mostafazdeh and A Bohm 

ti = - k ( ~  - i)@ (24) 

The principal bundle i, = f'(q) is induced by 

fa) = (foF)(x) = f(F(x)) = fW . (26) 

Thus using (4) one has 

f C 4  = IM1c.il (27) 

where I&) is an eigenvector of H ( i )  = fi(x). As mentioned above the topologies of 
A and i, are determined by the homotopy classes of [fl and [f] in [ M  = S2, @P(w)l, 
respectively. Alternatively, one can use the fact that 

[M.CP(Oo)l E H Z ( M * Z )  

and look at the first Chem numbers CI. which also classify all U(1) bundles [ I ,  71. 
We first claim the following: 

Claim 1. The bundles A and have the same topology for w c b (U c I). 

We prove this result using two different methods: 
by studying the homotopy classes; 
by directly calculating the first Chem numbers. 

We begin by using the first method. Let e E It+, be arbitrarily small. Define the map 
F : 16, U] x S2 -+ C P ( m )  by 

F ( 6 . x )  = f(F(x, 5 ) )  vx € s2 VE E [ E ,  V I  

where F ( x .  () (Fo(z, (), (p) and FO is defined in (23). We claim that 3 is the desired 
homotopy map, i.e. it has the following properties: 

(a) +(E,x) f ( F ( x , ~ ) )  = f(x). since E <( 1. 
(b) 3 ( u ,  x) f ( F ( x ,  U)) = f(i) = f ( x ) ;  this is obvious by (23) and (26). 
(c) 3 is continuous. To see this, note that 3 = f o  F. The continuity off  is assured by 

the continuity of H = H ( x ) ,  so F is continuous if and only if F is. As is seen from (23), 
F has a discontinuity at (x = north pole, ( = I ) ,  i.e. (2, () = ( I ,  I). Hence, by requiring 
U to be less than 1, i.e. o c b, we have 

The altemative method is to explicitly calculate the first Chem numbers. Fortunately 
the integrals can be easily evaluated and the result is 

E, = q  = -2k. (28) 

In (28), E, = (I/%) & d and c1 = (I/%) is? R stand for the first Chem numbers of 1 
and A respectively [8]. 

If we choose U 2 1, the map F and hence 7 become discontinuous in the full domain 
of ( E (0, U]. This marks the possibility of a change in the topology of i. Examining (23), 
we can prove that for U > I ,  f is homotopic to a constant map. hence 

c I and F is continuous on its domain. 
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Claim 2. The bundle ,i undergoes a change of topology at U = l(w = b ) ,  and it is a trivial 
bundle for U > l(o b) .  

To see this let us transform the domain tu, 00) to a closed one by considering the 
homotopy map G : [O, A ]  x S2 + C P(m), defined by 

G(f,x) = f ( G ( x ,  C N  
with 

F ( x ,  e = 1/<) { S : south pole 

for 0 c f < l /u  

for f = 0. 
G(x ,  f )  = 

It is easy to see that, for 2 U > l(i.e. f < l /u),  G and G are continuous. Furthermore 

G(l/v,x) = f (F(x ,  U)) = f (2) = f ( x )  

and 

G(0. x )  5 f(S) = constant. 

n u s ,  f = (a constant map). 
It should be emphasized that the triviality of ,i does not imply that the holonomy 

vanishes. As far as a non-flat connection exists on ,i the curvature f2 does not vanish, 
and the holonomy group is non-trivial. The only difference is that now one can smoothly 
deform the Hamiltonian in such a way that the phase vanishes. 

Again, we could calculate the first Chem numbers directly. In general, the integrals 
may not be as readily calculable as they are in our case. The results are listed as (29). and 
confirm our homotopy analysis. 

-2 for U -= 1 

0 for U > 1.  
E ,  = 1 (29) 

There are several remarkable consequences of (29). First of all, it shows a direct relation 
between a topological invariant of a U(1) bundle and the eigenvalues of angular momentum. 
Secondly, for U < I the fact that ST is an integer, translates to k being a half-integer. One 
can also try to use (25) to calculate (1/2n) f2 even when U = 1, which corresponds to 
the criricalfrequency: w = h. However, one must realize that the function F : S2 + Sz 
fails to be single valued at the north pole (N). Actually, F maps N to the equator. This 
is a consequence of the fact that F ( @ ,  cp) = (8, p), but at N, cp is not fixed. For U c 1 or 
U > 1, N is mapped to itself or to the south pole. In both of these cases, the indeterminacy 
in p does not cause any problem. But for U = 1, the situation is different and F is not 
well defined over whole of S2. Thus, one cannot use F and hence f to pullback from 
q, because the fibre over N would not be unique. However, one must note that this is not 
a counterexample to our method For U = 1 there is no (well-defined) F that satisfy both 
conditions (i) and (ii) of section I ,  and our consauction does not applyt. 

t A rather trivial solution lo this problem is to simply exclude N from the parameter space. In  that ose 
F : M'= s2- (NI --+ s 1 

is well defined and ean be used to pull back a bundle i' fmm A. The bundle i' = F I$,, (A) has obviously bivial 
ropology. The gmmebic phase is again identified with the holonomy of i'. 
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4. Conclusion 

The study of the topology of fibre bundles encountered in the subject of Berry phase 
suggests many interesting relations between quantum mechanics and algebraic topology. 
Among these is the relation between spin and the topological invariants such as Chem 
numbers. For the example considered, there is a critical frequency at which a topological 
change of the bundle structure oc1cu1s. 

A Mosrafazdeh and A Bohm 
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